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ABSTRACT

Consideration is given to a system of reaction diffusion equations which
have qualitative significance for several applications including nerve
conduction and distributed chemical/biochemical systems. These equations are
of the FitzHugh-Nagumo type and contain three parameters. For certain ranges
of the parameters the system exhibits two stable singular points. A singular
perturbation construction is given to illustrate that there may exist both
pulse type and transition type traveling waves. A complete, rigorous,
description of which of these waves exist for a given set of parameters and
how the velocities of the waves vary with the parameters is given for the case
when the system has a piecewise linear nonlinearity. Numerical results of
solutions to these equations are also presented. These calculations
illustrate how waves are generated from initial data, how they interact during
collisions, and how they are influenced by local disturbances and boundary
conditions.- In one example, a rightward moving "front" (rest-to-excited
transition) slows down, stops, turns around, and develops into a leftward
moving "back" (excited-to-rest transition) when it encounters appropriate
spatially localized, transient perturbations in the dependent variables. In
this case, the medium ultimately returns to the rest state. For the same
parameter values we have sought, but have not found, analogous local
disturbances sufficient to reflect a propagating "back". These observations
are consistent with the notion that the rest state is in some sense dominant
for a certain parameter range. It is conjectured that local disturbances or
certain boundary conditions cannot cause the reflection of a nondominant to a
dominant transition wave. Partial evidence for this conjecture is presented
by means of an analytic argument.
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SIGNIFICANCE AND EXPLANATION

The mathematical equations studied here were originally introduced as a

model for nerve conduction. They have also been considered as a model for

chemical/biochemical reaction systems as well as electrical transmission

lines. It has been demonstrated that electrical impulses in the nerve axon

travel with constant shape and velocity. Mathematically this corresponds to a

traveling wave solution. For a given mathematical model there may exist

different types of traveling wave solutions each traveling with a different

velocity. These include solitary pulses, multiple pulses, and traveling

fronts.

In this report we describe which waves exist for a given set of

parameters of the equations and how the velocities of the waves vary as

functions of the parameters. Numerical results of solutions to these

equations are presented to illustrate how the waves are generated from initial

stimuli, how they interact during collisions, and how they are influenced by

local disturbances. Accession For
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PROPAGATION PHENOMENA IN A BISTABLE REACTION DIFFUSION SYSTEM

John Rinzel and David Terman

1. Introduction.

The FitzHuqh-Nagumo (FHN) equations

vt v + f(v) - wt xx

(1.1)

wt = C(v - yw) , Cy > 0

has been studied extensively as a qualitative model for nerve conduction [7, 12, 181. In

this context the dynamics, (1.1) with Vxx = 0 , are usually taken to be excitable with

nullclines as in Figure IA. The rest state (0,0) is stable and globally attracting but

an adequate initial displacement from rest leads to a large excursion before the eventual

return to rest. Qualitatively similar dynamics are found for other excitable systems and

study of the FHN equation has provided insight into excitability and propagation phenomena

in several applications, e.g. see [18].

Here, we extend consideration to parameter ranges, e.g. y large enough, for which

the v - w dynamics are bistable (Figure IB). In this case there are two stable singular

points: the rest state on the left branch of f(v) and the excited state (Ev,Ew) on the

right branch. Although this parameter range precludes direct applicability to most nerve

or muscle membrane types there are examples of conditions which induce bistability 8,

111. Dynamics similar to Figure IS have also been considered theoretically in models for

neuronal interactions at the population level [19). For chemical/biochemical reaction

systems [14], as well as electronic transmission lines [13], two variable systems with

bistable behavior have been investigated. Sometimes in these studtes, although not

necessarily, the w-variable has much slower dynamics than v in which case 0 < c << 1.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS90-17158 and the National Institutes of Health.
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In (1.1), a 2 operates only on v • This spatial coupling is physically natural forx

the electronic transmission line as well as the nerve fiber. For the neuronal population

models, this corresponds to short-range coupling of one cell type (say, the inhibitory

cells) relative to the length scale of coupling for the other cell type (the excitatory

cells). For chemical systems, one might neglect wxx if w , the species without the

cubic-like instantaneous dynamics, diffuses much more siowly than the v-species. In (14],

for an enzyme-mediated reaction scheme, the assumption of very rapid v-dynamics is used to

scale the model equations and obtain a system qualitatively like (1.1) and Figure 1B with

only v as diffusible.

In this paper we will investigate various propagation phenomena for (1.1). An example

of Ortoleva (described by Fife [6]) offers preliminary motivation. Suppose that at t - 0,

the medium is in the excited state for x > 0 and in the rest state for x < 0. Subse-

quently, a transition wave will develop which then propagates away from x = 0 so that the

entire medium is ultimately brought to one of the two stable states, whichever is dominant

(a descriptive term also used in [6, 14]). Hence (1.1) should have a traveling wave

solution which corresponds to a steadily propagating transition either from the rest state

to the excited state, or vice versa, (Figure 2 A,B) depending on which state dominates. As

it turns out, for a certain parameter range, both types of transition waves exist, simulta-

nevouslv with different speeds; we refer to these as traveling front and back solutions.

Intriguingly, for a subset of the front-back parameter range, traveling pulse solutions are

also found. A pulse represents an excursion either from the rest state back to itself or

from the excited state back to itself (Figure 2 C,D). In addition, there may be solutions

for steadily propagating trains of pulses although we will not treat trains here.

In Section 2 we will outline the singular perturbation construction [2, 3, 91 of the

various traveling waves for 0 < c <( I . This will develop our intuition for the parameter

ranges in which the waves exist. Two special cases of (1.1) are treated explicitly: CUB,

when f(v) = v(v-a)(1-v) and PWL, when f(v) = -v + H(v-a) where H(.) is a Heaviside

step function; here, 0 < a (1/2. Next, in Section 3, we obtain analytically the front,

back, and pulse solutions for PWL in a large parameter range which extends beyind the

-3-
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region 0 < e << 1. Rigorous proofs for existence of these waves are given. We also

calculate wave speeds as functions of the parameters. In addition to stable waves, we find

unstable ones. A global picture (Figure 6) is provided for e,y-parameter regimes in

which the various waves exist.

Finally, in Section 4, we present numerical results of solutions to (1.1), PWL, for

given initial and boundary conditions. These calculations illustrate how waves are

generated from initial data, how they interact during collisions, and how they are

influenced by local disturbances. in one example, a rightward moving front (rest-to-

excited transition) slows down, stops, turns around, and develops into a leftward moving

back (excited-to-rest-transition) when it encounters appropriate spatially localized,

transient perturbations in v and w . In this case, the medium ultimately returns to the

rest state. For the same parameter values however, we have sought, but have not found,

analogous local disturbances sufficient to reflect a propagating back. These observations

are consistent with the notion that the rest state is in some sense dominant for these

parameter values. We conjecture that, for a certain parameter range, local disturbances

may lead to reflection of a front but cannot cause reflection of a back, or more generally,

cannot cause reflection of a non-dominant to a dominant transition wave. We offer partial

support for this conjecture with an analytic argument. Similarly we expect for such

parameters that, when a boundary is held at rest, an approaching front will be reflected.

On the other hand, a back which propagates toward a boundary held at the excited state will

not reflect but rather may tend to a spatially nonuniform, t-independent, steady state, a

solution which decays from the excited to the rest state with distance from the boundary.

For a chemical system, these phenomena would be observed, for example, in a capillary tube

which makes contact at the boundary with an infinite bath; where the bath maintains either

the rest or excited state.

The influence of boundaries and initial disturbances on propagating transitions, and a

notion of dominance, have also been discussed by Fife [61. In his (as well as others)

singular Perturbation treatment, fronts are formed because of pseudo-steady state

bistability; that is, the well-studied reduced equation, (1.1) with e 0 and w

-5-



constant, exhibits a transition wave. In such cases, only one type of stable transition

wave exists and the definition of dominance follows naturally; the wave is always

monotone. For the full system (1.1), fronts and backs are generally not monotone but

rather have over or undershoots (Figure 2 A,B) or, in some cases, damped oscillatory

approach to the steady state (also, see (15]). The bistability and (not yet rigorously

defined) notion of dominance, which we discuss, is for the full system. Fronts, backs, and

pulses, were also considered by Collins and Rose (41, Keener 191, and Magumo, et al E13jj

Ortoleva and Ross (14] describe fronts and backs, but not pulses, for a bistable system.

Klaasen and Troy [101 also treat some behavior of two-variable, bistable systems.

-6-



2. The Singular Perturbation Construction of Traveling Waves.

In this section we describe ways of determining intuitively which traveling waves

exist for a given set of parameters and how their velocities change as functions of

parameters. Our description summarizes the results of [21,13], [9]. If (vc(z),wc(z)),

z - x + ct, is a traveling wave solution of system (1.1), then setting uc(z) - v'(z)c

it follows that Vc(z) - (vc(z), uc(z),Wc(z)) satisfies the first order system of ordinary

differential equations

V= u
c c

(2.1) u, cu - f(v ) + w
c c c c

w =-(V - Ywc)
c c c c

The number of equilibrium states of system (2.1) will be either one, two, or three

depending upon how the line v = 'wc intersects the cubic-like curve wc = f(vc) ,

u c 0. if the parameters a and c are fixed, then when y is sufficiently small thec

origin will be the only equilibrium state of system (2.1). (Figure 1A). For y large

there will be three equilibrium states. In this case we shall refer to the origin, 0, as

the rest state and E = (Ev0,w) as the excited state (Figure IB). We shall assume

c > 0 so Vc corresponds to a leftward moving wave; note that the spatial profiles in

Figure 2 are for the rightward moving versions.

For a pulse we seek a value of c such that system (2.1) has a solution which

satisfies lim V (z) 0. A front is a solution of (2.1) which satisfies lim V (z) = 0
izl.. c c

and lim V (z) = E, while a back satisfies lim V (z) = E and lim V (z) = 0. In
Z++ z+__ Z-++.

the case of multiple equilibrium states it is also possible to have solutions which satisfy

lim V(z) = E. We shall refer to these as E-pulses.lzl .
We now sketch the singular perturbation construction of traveling waves. The solution

of system (2.1) is sought in separate regions, labelled "inner" and "outer", and then

joined appropriately. The inner region is defined to be those intervals over which rapid

changes in vc take place, while the outer region involves variations on a much larger

z scale.

-7-
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We first make the change of variables -cz in (2.1) to obtain:

Cv' . uC C

(2.2) 1 Ul - cu f(v ) + w dc c c c d¢

w' -i(v c _ Wc)
!c C c

Outer Region. Away from the locations of sharp transitions in v. we obtain the lowest

order approximation by setting e - 0 in (2.2) to obtain:

u 0C
d

(2.3) wc - f(v

wo (v -iv wc )
c C C c

This implies that in the outer region the solution lies on the slow manifold curve:

wc - f(VC) , Uc = 0 * We assume that the left branch of the cubic is given by v - g-(w)

and the right branch is given by v - g"(w).

Inner Region. Here we use the stretched variable z - - and system (2.2) returns to

system (2.1). With E - 0 in (2.1) we obtain the following lowest order approximation

c c

(2.4) U- cu - f(v ) + w , = "
c c c Cdz

w' - 0c

Therefore, in the inner region the solution must lie in a plane w c constant. We shall
C

see that this constant determines the speed of the traveling wave.

Matched Composite Solutions. To lowest order in C , the full solution is obtained by

matching the inner and outer solutions where their domains of definition overlap. We treat

each wave separately.

Fronts. We assume that the parameters are chosen so that the line v = yw intersects the

cubic as shown in Figure 1B. Since the independent variable & does not appear explicitly

in Equation (2.2) we may also assume that the inner region lies in a small neighborhood

about the origin, 0

-8-



The outer region describes the front's plateau. For Equation (2.3) we take vc - g+(wcj

and the initial condition:

(2.5) wc(0) = 0

This means that w . E as z + -.
c w

In order to match the inner and outer solutions we take the following boundary

conditions in Equation (2.4):

(2.6) V (-=) = 0 , Vc(+-) 
= 

I , wc(z) - 0

Equation (2.4) for cubic-like f(v) with boundary conditions (2.6) was studied by Aronson

and Weinberger (1]. They proved the existence of a unique solution for a unique value of

c provided A > 0 , where A _ f f(v)dv. Hence, these equations determine, up to lowest
0

order in E , the speed of the front. In the case f(v) given by (PWL) one can give an

explicit formula for the speed, c, of solutions of Equation (2.4) with boundary condition

(2.6) as a function of the parameter a (see [16]). This formula is

c = (I - 2a)[a(1 - a)]- '/2.

Note that c is a decreasing function of a and lim c = 0 . This is similarly true

at 1/2

for f(q) Viven by (CUB), in which case c = /2 (1/2- a) (see [3]).

Note that the outer solution for a front lies on the right branch of the cubic while

the inner solution lies in the plane w = 0 . The complete phase space trajectory for ac

lowest order front is shown in Figure 3.

Backs. In order for a back to exist the line vc = ywc must intersect the cubic as shown

in Figure 1B. Again we may assume that the inner region lies in a small neighborhood about

= 0. For the outer region, we take vc = g-(w ) in Equation (2.3) and the initial

condition:

(2.7) wc(0 ) = Ew

In this case, wc <0 and wc + 0 as z + -. Then in Equation (2.4) we take the boundary

conditions

(2.q) v,(--) = Ev , vc(+-) = g (Ew ) , wc(z) Ew

The results of Aronson and Weinberger imply that there exists a unique solution of Equation

-1-
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(2.4) with boundary conditions (2.8) for a unique positive value of c if and only if

B = fg-()f(v) - E ldv > 0 * From this we conclude that the back (to lower order) does

not exist if y is too large. This is because the assumption A > 0 implies that there

must exist a critical value of y , y = y2 , such that 8 < 0 for I > y2 . Hence, the

"singular" or lowest order back cannot exist for y > y2 * For f(v) given by (PWL) a

simple computation shows that y= .-2a 
° 

In this case one can also give an explicit
2 1-2a

formula for the speed, c, of solutions of Equation (2.4) with boundary conditions (2.8)

as a function of y and a . This formula is

c j2a - 1-. I[(a - ) (a - 11

We see that for the parameter a fixed the speed is a decreasing function of y , and

lim c = 0 . These properties also hold for f(v) given by (CUB).
7#2

Note that the outer solution of a back lies on the left branch of the cubic-like curve

while the inner solution lies in the plane w E . The total phase space tajectory for

a back is shown in Figure 3.

Pulses. A pulse can be thought of as a wave resembling a front followed by a back

traveling at the same speed. The trajectory in the phase space for the front part of the

pulse, or upstroke, begins at the origin and then makes a fast transition in the plane

w = 0 to the right branch of wc 
= 

f(vc) . It then slowly moves up the right branch of

the cubic-like curve until it reaches some point (v0 ,O,w0 ); this forms the plateau of the

pulse. The trajectory for the back part of the pulse, or downstroke, begins at the point

(v0 ,0,w 0 ), makes a fast transition in the plane w a w 0 to the left branch of wc = f(vc),

and then slowly returns to the origin along this left branch to form the recovery phase.

From Equation (2.4) it follows that the velocity of the back part of the pulse is

determined by the constant w0 . We must choose w0 so that the velocities of the front

and hack parts of the pulse are equal. If f(v) is given by (CUB) or (PWL) then our

previous discussions imply that w0  must be chosen so that

-11-



1 g (w 0 )
fl f(v)dv f+ [f(v) - w0 dv

0 g (w0)

g (w0

Setting y w0 it follows that a "singular" pulse does iuot exist for y > y

This is because if y > yI then Ew 
< 
w0 . The pulse cannot exist because when the

trajectory for the front part of the pulse moves up the right branch of the cubic-like

curve it must stop at the excited state. It will be unable to reach the point

(g+(w 0 ),O,w 0 ) where it would make the transition to the left branch of the cubic-like

curve in order to form the back part of the pulse. If f(v) is given by (PWL) then a

2a
simple computation shows that y = -2a

We now summarize our results concerning the singular perturbation construction of

traveling waves. These results are stated for f(v) given by either (CUB) or (PWL),

however similar results hold for some general cubic-like nonlinearities.

For f(v) given by (CUB), choose y0 so that the line v = y0w intersects the local

maximum of the cubic as shown in Figure 4. Choose y and y2 so that, respectively,

the horizontally and vertically shaded regions in Figure 4 have equal areas. For f(v)

a 2a 1+2a
given by (PWL) choose y= I- ' y1  - and = . The singular perturbation

construction then suggests that the following proposition is true.

Proposition 2.1. For 0 < e << 1 a pulse exists for y e (0,y1) , a front exists for

Y e (y 0 ,O) , and a back exists for y e (Y0 ,Y 2 )

Note that all three types of waves exist for y e (y0 ,Y1 ). We saw in the singular

perturbation construction that the speed of the front is , to lowest order in c , a

decreasing function of A = f f(v)dv , while the speed of the back is a decreasing
0

g (E
function of B = f wf(v) - Ew dv . Note that if y e (y0 ,y1 ) then A > B . Hence,

v

when all three types of waves exist, the back is faster than the front. For y e (Y 1 ,y2 ),

the front is faster than the back, and in this parameter range an E-pulse exists.

-12-
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It is of course possible for other waves to exist which do not aris. from the singular

perturbation construction. We shall see in the next chapter that there may exist two

traveling waves of a particular type for a given set of parameters. The singular

perturbation construction gives the faster wave which one expects, from numerical evidence,

is stable. The slower wave in expected to be unstable.

A

.9 -14-



3. Solutions of the Piecewise Linear model.

In this section we consider system (1.1) with f(v) defined by (PWL) and we give a

complete, rigorous description of which traveling waves exist for a given set of parameters

and how their speeds vary with the parameters. The construction we use here follows the

work of Rinzel and Keller [16].

Pulses: We seek values of c > 0 for which system (2.1) has a pulse shaped solution.

Because the independent variable, z , does not appear in the equation explicitly we can

choose the origin, z = 0 , so that vc (0) - a . We also assume that vc(zi) - a for

some zI > 0. Therefore, the solution we seek is a leftward moving version of the form

illustrated in Figure 2C, to be distinguished from an E-pulse (Figure 2D). It follows that

along with Equation (1.1) the solution V. . (vc Uc,wc)T must satisfy the conditions

+

(3.1) VI ? +K-1 v1 z I
0 z1

(3.2) vc (0) = vc(zI) = a, zI > 0

This jump condition (3.1) results from the discontinuity of f(v). To represent a pulse

the solution must also satisfy the condition v (z) + 0 as Izi +c

We express the solution as

az
a X1 e z 4 0

3(.)VB X e kz+ V 0 '( z 4 zI(53 c k k

IC k X k e z zI < z

k-1

where a1 ' 2' '3 are the roots of the characteristic polynomial
2

(3.4) p(x) = x3 
+ (e )x

2 
-(ey+1)x- (C )c c

and where

~-15-
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If
1+Y 1

(3.5) - 0 and Xk - k- 1,2,3.

I C(cak + cy) 1

From (3.4) it follows that either

a >0, a<%<0

or

1 > 0 , S 2 Re c2 < 0

Because v + 0 as z we must take c1 - 0 . It is this last condition which willC

give us a relationship for the speed, c, in terms of the parameters a,C, and y.

Using the continuity and jump conditions at z - 0 we obtain

61 -2 - 3
(3.6) B1  " - - , B

p1, 2 p' B3  P

where

L:y + cCZk

(3.7) 
Ck C k

and p1 : - p'( 0)

Matching at z = z, yields

'1lz 1  6 1 Y1Zl
c ae + - (1 - e

Since cI - 0 , we obtain

- a
(3.8) e * (I - a ) - s

Using (3.8) and the fact that vc(zi) = a we are led to the following transcendental

equation:

-16-
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p2 P; - a2u 6P -/1 PI

(3.9) F(aecy) 2-s + 2- I s -2 +63 0*•

1 2 1 3 61

Here we set a = Note that as a function of s Equation (3.9) does not depend on
Y

the parameter a . Equation (3.8) gives a in terms of s

The following theorem is proved in Appendix A by analyzing the roots of Equation

(3.9).

Theorem 3.1: Assume that the parameters c and y are given.

(i) There is a value of the parameter a for which a pulse exists if and only if

~2<1E:y < 1 .

(ii) For a given value of c at most one pulse can exist for a uniquely determined

value of a .

(iii) If LY2 < 1 then positive constants cmin, cmax exist with cmin < cmax and such

that

(a) for each c e (cmincmax) there is a unique value of a for which a

pulse exists,

(b) lim a = 0
Cccmin

(c) lim z1 =0 where zI was defined by v(zI ) = a, zI > 0
c cmin

(d) lim a Y

C+c 
2 (1+y)I c t'max

(e) lhm zI =

c+c
max

2
(f) as Cy +1 both Cmin and cmax + 0

In the proof of this result we will also see that a pulse cannot exist if c is

either too small or too large.

We have solved Equation (3.9) numerically for fixed values of c , c and y . The

corresponding value of a for each pulse is obtained from Equation (3.8). The solid

curves in Figure 5 display pulse speed curves, c versus a , for different values of

-17-
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y and C = 0.2. Each curve has a well defined knee (av,c ) characterized by

F(avCc - 0 and F (a ,,cv y) - 0 . For each value of a , < a < a ,wev V 2(1+y) VII

have two pulse solutions with speeds cf(a&,ey) and ca(a,e,y) with cf > cg . Rinzel

and Keller (15] showed that in the case y - 0 the lower branch, cs , corresponds to

unstable pulses while at the knee (a,c V ) the pulse is neutrally stable. Feroe [5]

showed by nuerically evaluating an analytic criterion that the upper branch, cf ,

corresponds to stable pulses. For some values of c and y , other than those in Figure

5 , the pulse speed curve has no upper branch or kneel in such a case, there is a unique

(unstable) pulse for a < Y and no pulse for larger values of a
2(1+y)

We observe that cmin(a), the minimum value of c on each speed curve, occurs at

a = 0 . The maximum value of c , cma x , on each speed curve, occurs at a - - where
2(1+y)

the curve terminates (e.g., 0 for y - 1.0) on the corresponding speed curve (dashed) for

front solutions here, z I These results are predicted by Theorem 3.1, parts (iii,b

and d).

Fronts: If in the construction of a solitary pulse, we take B 1 = 0 (see Equation (3.3))

then we will have a front as shown in Figure 2A. The front can be written explicitly as

a I z
aXle ,z 4 0

v (z)
k 3 k Xke +VI 0 z
k!2 kk

where V and Xk (k = 1,2,3) were defined in (3.5), k and Pk were defined in

(3.7), and the o are the roots of the characteristic polynomial p(x) defined in

(3.4). From Equation (3.6) we find that the condition 81 - 0 is equavalent to:

(3.10) p

In order to have a front we must impose the further restriction that

(3.11) < y or a <1-a 1+Y

to insure that there are multiple equilibrium states of system (2.1). By combining (3.10)

an (3.11) we see that a front with speed c exists if and only if c satisfies
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(3.12) -- < - .
p; I+y

the corresponding value of a is given by (3.10). The following theorem shows that a

front exists for c sufficiently small or large. It is proved in Appendix B

Theorem 3.2: Assume that the parameters c and I are fixed. Then there exists positive

constants ci, c2 with cI < c2  such that if 0 < c < c1  or c > c2  then (3.12) is

satisfied, and hence a front exists. Furthermore, lim a Y andC0 2(1+-f)

< 0 if Cy 
2  

1

c0 2
_a I 0 = 0 if E 

2  . 1

> 0 if Cy < 1

The front for 0 < c << I is unstable (or linearly stable) according as aa/actc-O > 0

(or < 0).

We have solved Equation (3.10) numerically for fixed values of the parameters

c, c, and y . The short dashed curves in Figure 5 display various front speed curves,

c versus a , for different values of y and e = .2. For y = .25 and y = 1, the

speed curves have two branches. One expects, as in the case of solitary pulses, that the

faster front corresponds to a stable wave while the slower front corresponds to an unstable

wave. Notice that for y = .25 the speed curve is not defined for all values of the

speed c . This is because from Equation (3.11) it follows that a front cannot exist for

a > = .2. These cutoffs for the speed curve y = .25 are illustrated by small
1+7

triangles.

As expected from Theorem 3.2 we find that lim a = on each speed curve. This
c +0 

2
(1+y)

is indicated by the semicircles in Figure 5 which were placed at the points

(ac) () Note that > 
0 for y = .25 and y - I , while

-- c=0 < 0 for I = 4 . This agrees with the last result stated in Theorem 3.2. The

proof of Theorem 3.2 also generalizes the results on limiting behavior for c small, the

bifurcation of a slow front from a standing front, to "cubic-like" f(v)
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Figure 5 demonstrates that the speed curves for pulses lie 'inside' those of fronts.

That is, if the parameters c,y, and c are fixed then the value of a for which a pulse

exists is always less than the value of a for which the front exists. This can be proven

rigorously by considering Equations (3.8) and (3.10).

The long dashed curve in Figure 5 corresponds to the speed curve for the front when

e = 0 . It is given explicitly by c - (1-2a)la(1-a)]- 1/2 . As the singular perturbation

construction, predicts for small c , the stable branch of the speed curves for the

fronts and the pulses lie very close to the speed curve for e = 0 .

Backs: It is not necessary to present the analytic construction of a back because there is

a one to one correspondence between fronts and backs under the change of variables

(vw) + ( '- v , - w). Hence a back with parameters (a,c,c,y) is identified,
1+Y 141

under the above change of variables, to a front with parameters (-- - a,c,c,y) . The
1+Y

speed curves, c versus a with c and y held fixed, for the fronts and backs are

therefore symmetric with respect to the vertical line a = * The same corres-
2(1+y)

pondence applies to pulses and E-pulses.

Figure 6 offers a schematic summary of our numerical and analytic results concerning

the existence of known pulse type and transition type traveling wave solutions of the

piecewise linear model. It shows the first quadrant of the y - c plane divided into ten

regions. In each region there are four numbers which indicate, respectively, the

multiplicity of the different types of wave, pulses, fronts, backs, and E-pulses, which

exist for those particular values of y and c . In this diagram we assume that the

parameter a is fixed with a e (0, 1/2) and we only consider waves with positive speed.

a 2a
The constants y0 , Y11 and y are chosen as before. That is , y0 - ' Y = 2a

1+2a
and F2 1-2a

Figure 6 was constructed by analyzing various speed curves, c versus a and c

versus y , for different values of c • We did not consider very large values of C

It is, of course, possible that no waves exist if c is too large.
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Whenever just one front or back exists in a particular region it corresponds to a wave

lying on the upper branch of a speed curve. One, therefore, expects it to be stable.

Whenever just one pulse or E-pulse exists in a particular region it corresponds to a wave

lying on the lower branch of a speed curve, and is, therefore, unstable.

In addition to the four types of waves already mentioned there also exist waves with

zero speed, i.e. stationary waves. Note that these waves do not depend on the parameter

c - For y e (y0 , I) there exists a stationary E-pulse. That is a stationary wave,

V(x) - (v(x),u(x)w(x)), such that lim V(x) E. For y > fI there exists a

stationary wave such that lim V(x) = 0. This will be called a stationary pulse. For

lxl
I= Y 1' two stationary transition waves exist. One satisfies lim V = E and

l
4
m V = 0 while the other satisfies lim V = 0 and lim V - E. These represent

x- .- ~ X-- X

limiting cases of the stationary pulse and stationary E-pulse with infinite pulse width.

Not only does Figure 6 illustrate how many traveling waves exist for a given set of

parameters, but also how the waves appear or disappear through bifurcations as the

parameters are varied. The dashed curves, for example, represent the existence of

neutrally stable waves out of which bifurcate the stable and unstable waves. These

correspond to the "knees" in the speed curves of Figure 5. The dashed curve separating

regions (IX) from (X) corresponds to neutrally stable fronts, while the dashed curve

separating regions (I) and (X) from regions (II) and (III) corresponds to neutrally stable

pulses. Both curves are drawn as monotonically increasing funtions of y bccause the

numerical results indicate, for fixed a , that the minimum value of I for which the

"knees" of the speed curves in Figure 5 exist is an increasing function of C . This makes

intuitive sense for the following reason. Suppose the recovery damping constant Y is

slightly increased from a critical value (for which the pulse is neutrally stable). This

diminishes the recovery or inhibitory effect of w so the system would exhibit a stable

pulse. Moreover, this pulse would persist even for a slightly greater recovery growth rate

C . Figure 6 also shows that for fixed c the neutrally stable pulse occurs at a larger

value of y than the neutrally stable front. This follows from a preceding remark that

-23-
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!I
the speed curves for pulses lie "inside" those of fronts. It means that a stable pulse

occurs simultaneously with a stable front only if w is adequately damped.

The dashed curve separating regions (IV) and (V) corresponds to a neutrally stable

E-pulse, while the dashed curve separating regions (V) and (VI) corresponds to a neutrally

stable back. Both curves are drawn as monotonically decreasing functions of y and both

approach y - y2 as E + 0 . This limiting case has the speeds of the E-pulse and back

tending to zero and the width of the E-pulse tending to infinity.

2
The solid curve in Figure 6 is given explcitly as ey = I . The transition from

region (VIII) into region (IX) corresponds to the bifurcation of a slow unstable E-pulse

from the stationary E-pulse. The transition from region (VII) into region (VI) corresponds

to the bifurcation of a slow unstable pulse from the stationary pulse. No pulses are shown

for t 2 > I because of Theorem 3.1(i).

The other bifurcations occur at y = y0 and y 
= 

y1  As y increases past N0

System (1.1) picks up the equilibrium state E. For e sufficiently small we therefore

have the creation of the stable and unstable fronts, a stable back, and an unstable E-

pulse. It is, of course, at X = y0 that the discontinuity of f is reflected. For f

given by (CUB) the creation of the fronts, backs, and E-pulses would not be so sudden.

Since System (1.1) would have another equilibrium state besides 0 and E there may be

other bounded solutions of System (1.1) which we have not considered.

For y < y the speed of the stable back is greater than that of the stable front.

The opposite is true for y > yI . When y = Ti, the stable front and stable back have

the same speed. As I f y1 t' e width, z1, of the stable pulse approaches +- . In some

sense, therefore, the stable pulse bifurcates from the front and back as Y decreases past

Y= T1. Other bifurcations also occur at y = y1  For example, as - + y1 both the

stationary E-pulse and the slow unstable front approach a stationary transition wave which

connects the rest state with the excited state.

Finally, when both a stable front and stable back exist, a stable pulse also exists

only if the back speed exceeds the front speed; this necessary condition is satisfied by

-24-
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parameter values in region (I1). The condition is not sufficient however as evidenced by

region (X). The corresponding statements also hold for E-pulses in regions (IV) and V)

respectively.

- 5
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4. Transient Interactions of Waves and Local Disturbances.

We performed a number of numerical experiments to determine various properties of

traveling waves. In all of the results illustrated here we used the piecewise linear model,

t(v) - v - H(v - a), with parameter values a - .25, c - .1, and y - .51 these para-

meter values correspond to region (III) in Figure 6. For numerical integration, we used a

Crank-Nicholson scheme throughout with Ax - .1, At - .05, and a zero flux condition,

av/ax - 0 , at both boundaries. For our choice of parameters the excited state is

(Ev,E) = ( , ) and a stable front, a faster stable back, and a stable pulse exist.

In describing the numerical experiments it will be convenient to refer to different

phases of the traveling waves. We shall refer to the sharp transition from the left branch

to the right branch of f(v) for the front or pulse as "the leading edge", and the sharp

transition from the right branch to the left branch of f(v) for the back or pulse as the

"trailing edge". These, of course, correspond to the inner regions in the singular

perturbation construction.

Formation of a Pulse from Square Initial Data. The formation of a pulse from specified

initial conditions Is illustrated in Figure 7 . Spatial profiles v(x,t) versus x (Figure

7A) and w(x,t) versus x (Figure 7B) are shown for discrete t: tp = Sp , 0 4 p 4 8

For initial data we used square steps of unit height: v(x,0) = X[5 ,3 51  and w(x,0)

X[2.5,7.,] where Xtb] is the characteristic step function of the interval la,b].

Note the asymmetrical distribution of v(x,0), w(x,0) with respect to each other; the

step in w(x,0) overhangs that in v(x,0). This helps ensure the formation of a pulse

rather than two fronts traveling in opposite directions.

We see that the leading edge in the front part of the pulse is clearly formed at

t - t, and proceeds to travel with constant velocity. The trailing edge in the back part

of the pulse also forms quickly but begins by traveling very slowly (t. < t ( t2 ). The

trailing edge then accelerates until it is actually moving faster than the leading edge

(ti < t < t.). The trailing edge then slows down and its speed approaches that of the

leading edge. Then the leading and trailing edges travel with the same soeed

(t5 < t < t8 ) and a pulse is formed.

-26-
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In order to understand why the pulse is formed in this way recall that in the singular

perturbation construction of a traveling wave the recovery variable, w , is assumed to be

constant in the inner reqion. The speed of the leading edge is a decreasing function of

this constant while the speed of the trailing edge is an increasing function of this

constant. Ahead of the pulse w is always very close to zero, and hence the leading edge

propagates with constant speed. The trailing edge, however, does not see a constant value

of w , and therefore its speed varies.

In the region between the trailing and leading edges the spatial derivatives of v

are very small, and hence the solution will follow very closely space clamped dynamics.

That is, the solution (v,w) will evolve according to the ordinary differential equation:

with initial conditions v(O) = 1 and ;(O) - 0 *It follows that in the middle region

the solution (v,w) becomes very close to the excited state (Eq, Ew).

The velocity of the trailing edge initially increases until this edge sees a value

of w very close to w - Ew. Because of our choice of parameters the trailing edge is now

traveling faster than the leading edge. After the trailing edge passes x - 35 its speed

decreases because then it advances into a region where w is decreasing. The pulse is

formed when the trailing edge slows to the same speed as the leading edge. Then, be-cause

both edges have the same speed, the trailing one always sees a constant value of w.

For a singular perturbation construction of how traveling waves are formed from

initial data see Keener (91

Collisior of a Pulse and a Front. In Figure 8 we take for initial data (dashed curves) a

pulse moving to the right and a front moving to the left. Figure SA shows profiles, v(x,t)

versus x ,and Figure BE shows profiles w(x,t) versus x , for discrete tz tp= 5p,

0 p 4 7 *When the two leading edges reach each other the dynamics are very similar to

the collision of two fronts. This brings the region near the fronts to the excited
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state (t3 < t < t4 ). When the trailing edge of the pulse enters this excited region it

increases in velocity and evolves into a back moving to the right (t5 ( t t7). The
5 7

reason that the trailing edge increases in velocity is that the value of w at the excited

state is greater than the value of w at the trailing edge of a pulse. The singular

perturbation construction showed that the velocity of the trailing edge of the pulse is an

increasing function of the value of w at which the trailing edge takes place.

Reflections of a Traveling Wave. Suppose that ((x,t), B(x,t)) is the solution of System

(1.1) with initial data (n1(x), n2 (x)). We define (n (x), r(x)) to be a local

disturbance if lim {sup (l(x,t)l + IB(x,t))) = 0. This is a local disturbance with
t+- xex

respect to the steady state (v,w) - (0,0); one may also define analogously a local
disturbance with respect to (Ev,Ew). We say ((x,t), w(x,t)) is a reflection of the

traveling wave solution (v(x,t), w(x,t)), a reflection caused by a local disturbance, if

(i) For some time T > 0 and some local disturbance (nl(X), n2 (x)),

(v(x,t),w(x,t)) is the solution of systems (1.1) with initial data

(v(x,T) + n1(x), w(x,T) + n (x)), and

(ii) There exists a traveling wave solution (v1 (x,t), w1 (x,t) moving in the

opposite direction of (v,w) such that

lim {sup(l;(x,t) - v1 (x,t)l + Iw(x,t) - w1 (x,t))} o
t+- xeR

We say that it is possible to reflect the traveling wave (v,w) if there exists a

reflection of (v,w).

Our numerical experiments indicate that for given values of the parameters

a, c, and y it may be possible to reflect some traveling waves but not others. Figure 9

shows a front being reflected into a back with profiles v(x,t) versus x (Figure 9A) and

profiles w(x,t) versus x (Figure 9B) for discrete t: tp 2.5p , 0 4 p f 17. The

first three profiles show a front moving to the right. At t = t3  (dashed curves) we

increased the values of w over a short interval just ahead of the leading edge. This

certainly represents a local disturbance. In fact one sees that in the disturbed region

the solution slowly returns to rest. As the leading edge enters the region of increased

w it slows down Ct5 < t < t10 ) and then collapses to become a back moving towards the
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left (t10 < t < t 17 ). Notice that the back travels with a speed greater than the front, as

indeed it should for parameter values from region (III) of Figure 6. This is also

consistent with the singular perturbation prediction which we note gives reasonably

accurate estimates for the back and front speed if c is small.

It may be surprising to discover that under the corresponding circumstances a back

will not reflect to become a front. This is shown in Figure 10 with Figure 10A showing

profiles v(x,t) versus x and Figure 10B showing profiles w(x,t) versus x for

discrete t: tp - 2.5p, 0 4 p 4 14. The first two profiles show a back moving towards the

right. At t - t2  (dashed lines) we sharply decreased w over an interval directly

ahead of the trailing edge of the back. This is certainly a local disturbance (with

respect to (Ev, Ew))
" 

In fact, one sees that in the disturbed region the solution slowly

returns to the excited state. Upon entering the disturbed region the trailing edge slows

down and then apparently stops, waiting for the disturbance ahead of it to return to the

excited state (t4 < t < t9 ). The back then continues to move in its original direction

(t9 < t < t15).

Our numerical experiments suggest that if the parameters a, c, and y lie in a

certain subset of values for which the back speed exceeds the front speed then it is

possible to reflect a front but impossible to reflect a back by local disturbances. To

understand this behavior we formulate and study an idealized model problem. We consider

first the case of a back moving rightward toward a local disturbance of decreased w

(Figure 10). As one recalls from the singular perturbation construction, the back speed is

determined by the value of w directly ahead of it and, moreover, this speed decreases

with decreasing w . Hence one expects intuitively that if w falls abruptly in the

disturbed region then the back will decelerate suddenly and virtually halt. An appropriate

formal perturbation calculation for this transient stage, which includes the deceleration,

temporary halt, and initiation of either reflected or continued propagation, is yet to be

worked out. Our approach is to observe from the numerical results during this transient

state, T 4 t ( T say, that v and w at the "halting location" x0 have values close

to Ev and Ew Thus we consider the model problem in which v,w satisfy the equations
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vt . vxx + f(v) - w

(4. 1a)

Wt - C(v - Yw) for x<x 0 , te(T,T I )

with the boundary conditions:

(4.1b) (v(xo,t), w(xo,t)) - (Ev, Ew)

(4.1c) (v,w) + (0,0) as x + -

and with the approaching back profile as initial conditions.

We remark that one can also motivate the boundary condition (4.1b) as follows.

Let V denote the disturbed region in Figure 10. Shortly after the disturbance occurs,

v > Ev , w < Ew  in D and so v diffuses outward across 3D . Hence, just outside V

wt > 0 and one observes a local increase in w there. The local spread of v also means

that wt  is less positive just inside 3D than it is toward the middle of V. This

explains the under/overshoots in the w-profile (Figure 10B) that one sees in crossing 3D

outward. From this it also follows that between the under and overshoot, w - E
w

(at x - x0 , as in the preceding paragraph), at least for a while. Finally, if the back

approaches soon then v > Ev Just inside and v < Ev just to the left of aV so that

v - Ev near x0 . The above argument does not apply if the local disturbance is not

fairly sharp. But of course, one can probably not induce reflections by disturbances which

are not sharp. At the same time, the singular perturbation treatment would not predict

halting if the local disturbanca were slowly varying in x ; ir such a case, the wave could

decelerate sufficiently without stopping as the disturbance wears off.

One expects that the temporary halt of a back may be viewed as the approach of the

solution of (4.1) to a time-independent steady state solution. The steady state solution

(q(x), p(x)) must satisfy

q" + f(q) - p - 0

q - yp " 0

with boundary conditions

(q(x,),p(xo)) = (E , Ew) and (q(--),p(--)) (0,0).
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Since p(x) - q(x)/y in (--,xO) we seek a function q(x) which satisfies the boundary

value problem:

q" + f(q) - q/y = 0 in (-,x O)

(4.2)

q(--) = 0 ; q(x0) = Ev

For y e (y0 ,y1 ) problem (4.2) has a unique solution. This can be seen by considering the

phase plane portrait for the equation q" + f(q) - q/y = 0 as shown in Figure 11.

Finally, the steady state will be approached only if it is stable as a solution to the

System (4.1). In Theorem 4.1 we demonstrate (see Appendix C) the stability or instability

of (q,p).

Theorem 4.1.

2
Suppose y0 < Y < Y1 , or equivalently I < 2a/E v < 2 . If Cy > I , then (q(x),

p(x)) is linearly stable as a solution to (4.1). For cy
2 

< 1 , (q(x), p(x)) is

linearly stable when

(4.3) 2a/E v > 1.278...

but unstable, for given Cy, if

(4.4) 0 < 2a/E v - 1 << I

We conjecture that when the back is faster than the front and (q(x), p(x)) is stable

then the back cannot be reflected by local disturbances.

A few comments on Theorem 4.1 are in order. The sufficient condition (4.4) which

guarantees instability is an asymptotic condition. Precise conditions are those for which

inequality (C.11) of Appendix C is satisfied. As the proof demonstrates, the loss or gain

of stability as parameters are varied leads to Hopf bifurcation of periodic solutions.

This applies to more general and related problems for bistable systems which we will pursue

in further work. Finally, note that the statement in Theorem 4.1 for cy2 > 1 holds for

any "cubic-like" f(v) ; see Appendix C .

Our computed examples are for parameter values which satisfy inequality (4.3). Hence,

corresponding to our model problem (4.1), we identify the halted back in Figure 10 with the

steady state solution (q,p) of (4.1). The back waits at this steady state for the local
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disturbance to decay sufficiently. When this has happened the back can proceed through the

disturbed region. For parameter values such that the steady state (q(x),p(x)) exists but

is unstable we would not predict that it is impossible to reflect the back.

For the analogous problem (Figure 9), the front does reflect, rather than stop and

wait for the local disturbance to decay, because the corresponding steady state solution

does not exist. To be more precise, the model problem, in this case, is the system of

Equations (4.1a) with the boundary conditions

(4.5a) (v(xot), w(xo,t)) - (0,0)

(4.5b) (v,w) + (Ev,Ew ) as x + -

rather than (4.1b,c). We would seek a steady state q(x), with p(x) = q(x)/y , as a

solution to the boundary value problem

q"+ f(q) - q/y = 0

(4.6)

q(--)= EV I q(x 0 0

From the phase plane portrait (Figure 11), we see that this problem does not have a

solution.

Let us examine further the transient phase of the reflection in Figure 9. Observe

that the leading edge is stopped by the local disturbance at t = t4  and does not move

for t4 < t < t10. It cannot move to the right because of the local disturbance in w

It also cannot move to the left. If it did it would resemble the trailing edge of a back

moving to the left. Since the value of w immediately to the left of this trailing edge

is very close to zero this would be impossible. The leading edge of the front must

therefore wait at x = x0  for either the values of w directly ahead of it to decrease

sufficiently so that it can move to the right, or for the values of w directly behind it

to increase sufficiently so that it can move to the left. In Figure 9B we see that the

value of w steadily increases behind the leading edge for t5 < t < t9 . When these

values of w are large enough the leading edge collapses to form a back moving to the

left. Hence, for a front to reflect the local disturbance must be sufficiently large so

that the leading edge is stopped long enough for the values of w behind it to increase
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sufficiently. Note that the values of w behind the leading edge would be unable to

increase sufficiently if there existed a steady solution of (4.5).

The analysis we have presented so far holds for y e (y0 ,7y). Only for these values

of y does the back speed exceed the front speed. On the other hand, the front is faster

than the back if y e (y1,y2 ). In this case there exists a solution of the boundary value

problem (4.6) but there does not exist a solution of Equation (4.2). Hence we conjecture

that, for a subset of parameter values for which the front speed exceeds the back speed, it

is always possible to reflect a back but not a front.

These results indicate that for y < yI, the rest state in some sense dominates the

excited state. For y < y the only type of stable traveling wave which brings the system

to the excited state is a front which can be reflected by means of a local disturbance. For

a subset of this range of parameters, when (q(x), p(x)) is stable, the back and pulse

cannot be reflected. Hence, if the system is being switched, as t + , towards the

excited state then it is possible, by means of a local disturbance, to return the system to

rest. However, if the system is switching towards the rest state then it is impossible, by

means of a local disturbance, to bring the system to the excited state. For y > yI the

corresponding opposite statement is true and the excited state is dominant.

As mentioned in the introduction, our consideration of reflections by local dis-

turbancas also leads to expectations about the outcome of a front or back which approaches

a boundary where v,w are held fixed at either (0,0) or (Ev, Ew). This is because our

model problems (4.1a,b,c) and (4.1a, 4.5a,b) incorporate Dirichlet boundary conditions

explicitly. Suppose parameters are such that the back speed exceeds the front speed.

Then, because (4.6) has no solution, we would expect a front to be reflected from a

boundary where (v,w) - (0,0). Next consider a back approaching a boundary where

(v,w) = (Ev, E w).  If the steady state solution (q(x), p(x)) to (4.1) is stable, then we

expect the back will tend to (q(x), p(x)) and not be reflected. On the other hand, if

(q(x), p(x)) is unstable (ey2 < I and inequality (4.11), cf. Theorem 4.1) then we expect

that the back might be reflected. Indeed, we have obtained numerical solutions of the

model problems, for parameter values in this latter regime, which illustrate that
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reflection may take place for a back approaching an excited boundary as well as f or a front

approaching a resting boundary.
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Appendix A - Proof of Theorem 3.1.

Throughout this discussion we assume that the parameters c and y are fixed and set

h(s,c) - F(a,c,c,y). We determine for which values of c there exists a root, s , of the

equation

h(s,c) = 0

such that s e (0,1).

Note that,

(A.1) h(1,c) = -n (1,c) 0

for all values of c . Furthermore, for any fixed value of c there can exist at most one

root of the equation a-h (s ,c) = 0 for s* > 0 If a root exists then it is given by3
2

5= ( 2 3a 1 (Y~-3) p2 J1/aa
In the case a2 - a3 we must choose a branch of the logarithm to determine s This,

along oith (A.1), implies that for a given value of c at most one pulse can exist for a

uniquely determined value of 8 and, therefore, from (3.8), for a uniquely determined

value of a . Furthermore,

Lemma A.I. Assume that the parameters c,y , and c are fixed. Then a necessary and

sufficient condition for pulses to exist is that either

32
(a) h(0,c) > 0 and - h(1,c) < 0

(A.2) or
a2

(b) h(O,c) < 0 and 1L h(1,c) > 0.
as

2

In Lemmas A.3 and A.4 we determine for which values of c the functions h(0,c) and

h(1,c) are either positive or negative. We first prove some properties of a the

positive root of the characteristic polynomial p(x) defined in (3.4). Recall that

2 1+y
Y

Lemma A.2. Assume that the parameters e and y are fixed. Then

(a) lim a= a
c+0
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3Q1 2
(b) *Y~~c=

ZiT-C-O 2cy2

(c) C1 > c for all c 0

(d) if eY2 > 1 then a1 > a for all c > 0

(e) if ey2 < I then, a1  < 0 for 0 4 c < y 2

= 0 for c - Oa

> a for C >0.

Proof. Parts (a) and (b) follow from substituting an expansion of a1  in powers of c

into the characteristic polynomial (3.4). For (c) note that p(c) = -c - CY+c < 0
c

Since p(x) > 0 for x > aI the result follows.

We prove (d) by showing that p(a) < 0 for all c > 0 . Now, p(a) -

o/2 (2 _ co - (l+cy)). Hence, p(a) = 0 if c = 2e- If Cy
2 

> 1 then

/y(1+ey)
p(o) is never equal to zero for any positive value of c . Therefore, either p(O) < 0

or p(a) > 0 for all c > 0 . It follows that either a, > a or aI < a for all c > 0.

But, by part (c) a1 > c for all c . Choosing c > a the result follows.

2To prove (e) assume that cy < 1. Hence a > 0 . By inspection,

p(o) < 0 for c > 0 . Hence, a < aI because p(x) > 0 for any x > a Similarly,

p(O) > 0 for c < 0 so, in this case, o > a1 . //

We now study the function h(0,c) which can be written explicitly as:

,,( A .3 ) h ( 0 , c ) -2 - .2

- 2

First note that the condition h(0,c) > 0 is equivalent to

(A.4) H(c) -(c 2 _-Y~ + ( J'2- 2a + (C + EY) <0

(A°4) is obtained by substituting into (A.3) the explicit formulas for p a and 6

and then using the fact that p(aI )g 0 f

Lemma A.3: Assume that the parameters e and y are fixed.

(a) There exists a positive constant such that if cy < I and c e (0,c ) then

h(0,c) > 0•
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22
(b) There exists a positive constant c2 such that if E¥2 < I and c > c 2  then

h(O,c) < 0

2
(c) If ey > 1 then h(O,c) < 0 for all c > 0

Proof:

From Lemma A.2(a) and (b) it follows that H(0) - 0 and HI'(0) t )< .Y

Part (a) now follows immediately. (b) is true because a, - c for c >)> I so that

lim H(c) - 4- . We prove (c) by showinq that H(c) > 0 for all c > 0 . From
c+w 3
p(Cl 0 , we replace the first and third terms of H(c) by c a- c(Cy+1)C 1 . Now

H(c) may be written as

H(c) - cn 2 2 + y2 .

Hence, from Lemma A.2(d), H(c) > 0 //
• 2 2

We now study 2 h(1,c) which can be written explicitly as -2  h(1,c) -i- - 2.

as22  as22
Lemma A.4. A necessary and sufficient condition for i h(1,c) < 0 is that

(A.5) (ey+e) 1/2 < C(Ey+C) 1/2 + !(c 2 +cy) 2 + c 2 + y
2Proof: If we substitute the explicit expressions for p. and 61 into that of -2 h(1,c)

2 2

and use the fact that p(nI) - 0 we find that a h(l,c) < 0 is equivalent to
a2T

(A.6) ( 2 ) 1/2 <
cy + c

which is equivalent to

p[( + C 1/2 ) < 0

Ey + C
This can be written as

(A.7) - 2 c r - (y+I) < 0

where

r ey e 2)1/2.
CY+ c2

Finally, (A.7) is equivalent to

'Y +_ e _ )1/2 - r < c + 42 + y + 1
e, + c

or,

Ey + C) 1/2 < C.(Cy + c211/2 + /(c2 + cy)2 + C2 + cy o //
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4

Lema A.5: Assume that the parameters e and y are fixed.
2

(a) If cy
2 > I then a h(1,c) < 0 for all c > 0

2 
a.2

(b) If ey < 1 then there exists a positive constant Cmin such that

2
2(1,c) > 0 for c e (O,c min ) and

a2

a h(1,c) < 0 for c > Cmin

a 2
m

Proof. (a) Note that (K.5) is true for E 2 > A at c - 0 . The result follows because

the right hand side of (A.5) is an increasing function of c

(b) This is true because (A.5) fails to be true for cy2 < I at c - 0 , and the riqht

hand side of (A.5) is a monotonically increasing function which tends to +- as c + -. //

With these preliminary leemas the proof of Theorem 3.1 now follows easily. From

Lemas A.1, A.3(c), and A.5(a) we conclude that a pulse cannot exist if cy2 > 1. Prom

2Lemmas A.1, A.3(a), and A.5(b) it follows that a pulse cannot exist if cy < I and

c < min(c1, C n). Similarily a pulse cannot exist for c > max(c cn). We assume thatc<mnccmin 2 min
2

ey < I , unless stated otherwise, throughout the rest of Appendix A . We claim th4-

pulses exist for values of c close to, but greater than Cmin . Prom Lema A.5(b) we

have that 2 h(1,c) < 0 for c > cmin  Our claim follows from Lemma A.1 if we can show

that h(0,cmin) > 0 . But, from (A.6) we have that

a (ci C1 + )1/2 < a
SCy + Cm

2 p 2Furtherore, a222 < 22i Since
Furthermore, 2 h(1,c n ) = 0 , and therefore ) 2-S

h(Ocmin) - 2 - the result follows.
261

We next show that lim a - lim zI  0 . From (3.8) it suffices to show that at
c+c c+c

min min

c = cmin , s I • From A.1 and Lemma A.5(b), it follows that
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h(lcmin) .sh(1,ci) 42 (,min) - 0 Therefore, h(Scmn) has a triple root

at s - 1 and the result follows.

We now wish to define Cmax . Recall that h(0,cmin) > 0 and, from Lemma A.3(b),

h(0,c) < 0 for c > c2  Let c - infic > c m h(0,c) - 0}. Our previous discussionh(,c 0fr > . Le max cmmn

shows that pulses exist for c e (Cmin , Cmax). Note that the condition h(0,Cmax) - 0

implies that 2 2 at * Furthermore, from (3.8), it follows that at c - cmax'

0 .s . 1 - a -1 or,

a T - 202 2(1+y)

That is, lim a y-__. Since a - e we also conclude that lim
c+C 2(1+y) c+cmax max

2
It remains to prove that as cy 2 I both cmin and cmax 1 0 . Recall that

h(0,cma) - 0 . Therefore, H(cmax) = 0 where H(c) has been defined in formula (A.4).

2 2Moreover, at ey - I , H(0) - H'(0) - 0 and, for ey > 1, the proof of Lemma A.3(c)

shows that H(c) > 0 for all c > 0 . Hence, cmax - 0 must be a double root of the

equation H(c) s 0 at cy2 - I and the result follows.

-48-



Appendix B - Proof of Theorem 3.2.

Assume that the parameters e and y are fixed. Recall that a necessary and

sufficient condition for a front to exist is that the speed, c , satisfies the inequality

P; 2

From the proof of Lemma A.3(a), we conclude that l3m h(0,c) - lir a 0 Thatc+lO c 0 a26

2 2is, lim 20 > a . Therefore, a front exists for c sufficiently small.
c+0

Furthermore, if c is sufficiently large, then > 20 > a and a front exists. This

is an immediate consequence of Lemma A.3(b) and (c).

We next show that lim a = = . In the preceding paragraph we saw thatcO 202  2(1+y) "

P;- 2
im-- 20 The result now follows from Equation (3.10).

c 0

It remains to prove that

> 0 if C2 < 1

(B.1) c-O 0

I 2
< 0 if LY >1.

it will be easier to consider c as a function of y . Note, for PWL, that at c 0

= = -2a which implies that Day/aaj > 0 • Hence, (B.1) is equivalent toI = 1"12a toO

> 0 if £72 <

(B.2) ajc=0 =0 if Y2 _

< 0 if £Y1 > I.

The result (B.2) can be verified algebraically for PWL. In the following proof we

require only that f is "cubic-like" as shown in Figure 4. For PWL and CUB, y1 is

defined in Section 2. More generally, when f may not have the symmetry properties of PWL

or CUB, then y1  is the value of y such that
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.4 q

E,

0 - f Cf(v) - I]dv.
0

In this more general case, one should remember that aa Cl and Oy/clc 0 will have

opposite sign if ay/ aac.0 < 0 .

We first write y, vc, wc and f(vc ) as power series in c
- 2-

y(c) - Y 1 + cy1 + c Y2 +

vc(Z) - P0 (z) + co1 (z) +

wc(z) = Io(z) + c*1 (z) +

f(v - f(V 0) + CV If', OP ) +

Recall that (Vc, c ) solves

cv' = v" + f(v ) - w
c c c c

(B.4)
cw' -C(v - Ywc )

with boundary conditions

(V (-), wC-")) (0,0)

(v c(+), w (+)) = (Ev,E w

Substituting (B.3) into (B.4) and equating like order terms we find to the zeroth order

that:

0 o ; + f() 0 *0

0 = 0 - " '10)

(V ) = (0,0) and (0o(+-),*O(+.)) = (EvEw).

Hence, *0 (z) = 0 (x)/Y 1  Therefore, P0 (z) is a solution of the ordinary differential

equation

0 -0 + f(O) - ' P
0 0 1  0
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with boundary conditions

(- 0 0 00(+-) - Ev

It is not hard to show that such a solution exists and is a monotonically increasing

function.

We now equate -irst order terms to obtain

0 1 1 *1
(B.S)

I. - -,l (Y* + *O

This implies that

-pY T1 *0 *
Ti Cy I

and, hence, W1 is a solution of the equation

(B.6) 1 f 'C(O) - 2 (1 - - TI0
1 1 CT1  T1

Since 0 is a solution of the homogeneous equation:

'i ~~~(vP)" + (P)'f,(O) - -Py = 0,

a necessary and sufficient condition for (B.6) to have a solution, s , is that

(B.7) . P'(l -p 1 T1
0'0 2 ~ 2"YO0 Y1

E
2

Here - e u v dx. Now OP; 0 = 2 Therefore, (B.7) becomes

E o

Cy2 2y 2 v
T1

or
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2

2 [ l v ; P

from which the result follows.

We note that the same proof applies for the emergence of the slow back solution from

- 2
c = 0 except, in that case, yI takes the opposite sign because ( , 0 = -E v/2

To treat stability we introduce a traveling coordinate frame (z,t), z - x + ct , and

seek exponential solutions (e
At 

V(z), e tW(z)) to the linear variational equation.

Hence, A, V, W, satisfy

XV = V" - cV' + f'(v c(z))V - W

(B.8)
XW = -cW' + e(V- YW)

As in the proof above, we follow a perturbation argument for small c and write

V(z) = V (Z) + c V (z) +

W(z) = W0 (z) + c w (z) +

A X X0 + c , + ...

To lowest order we find for y - y + O(c) that W0 = V0 , and
1 0 + 

CX1

(B.9) V; + [10 + f'(0(z))] V0 = 0 , z e R

where

(B.10) % - -Xo - C/( X + e,.

The perturbation procedure is straightforward: XI is obtained from the solvability

condition for the next order equation, etc. Therefore we concentrate on (B.9), a

Schroedinger eigenvalue problem. If (B.9) has a bounded solution with Re A0 > 0 then

(Vc,wc) is unstable for 0 < c << 1. On the other hand, if (B.9) has no bounded solution

with Re A0 > 0 then (vc,wc) is linearly stable for 0 < c << 1. We remark that

eigenvalue problems of the form (B.9), (B.10) were also encountered in (16].

Equation (B.9) always has the solution X0 = 0 , i.e., l0 
= 

-1/-y 1 and V0

This corresponds to the translation invariance of P0 (z) and does not determine
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stability. Because of the quadratic relation between U0 and At . a second solution to

(B.9) with U0 - -Iy/1 , V0 - i is A0  -C 1 + 1/y1 . If CY 2 < I then this second

solution satisfies A0 > 0 so that vc(z), wc(z) is unstable. On the other hand, suppose
2

Cy > 1. Then the second solution satisfies A, < 0 and does not lead to an unstable

mode. Moreover, since the eigenfunction P is of one sign it corresponds to the lowest

value of V0 in the discrete spectrum of (B.9). Therefore, any other U0 must be greater

than -I/y 1  and, from (B.10), the corresponding values of 10 satisfy Re A0 < 0 . Hence,

if cy2 > I we have linear stability for small c
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Appendix C - Proof of Theorem 4.1.

Without loss of generality we take x0 - 0 . If Y0 Y ' ,1 i.e. I < 2a/E v < 2,

then for PWL the steady state solution to (4.2) is

q(x) - a e(x) x

(C.1)

- Ev + (a - E / 2 )(X-) - (E / 2 )e(x<) , 4 x

where

(C.2) ~--In (?a/Ev-1)
2a

and, as in Section 3, a - I + l/1. For stability, we consider exponential solutions

et V(x) e tW(x) to the linear variational equation. As in Appendix B, W satisfies

W(X) - E V(x)/(X + E'y) and A, V(x) solve the Schroedinger eigenvalue problem:

(C.3) V" + [p + f'(q(x))]V = 0 - ( x ( 0

where

(C.4) X I idA) - t-- £/( A + Cy)

and

(C.5) V(o) 0 0 IV(x)l 1 0 as x --

For PWL,

(C.6) f'(q(x)) -1 6()/q'()

Here 6(&) is the Dirac delta function.

If (C.3) - (C.6) has a solution with Re A > 0 , then we say that q(x) is

unstable. On the other hand, if there is no solution with Re A > 0 then q(x) is

linearly stable. Indeed, it is possible that there may be no values of A for which

(C.3)-(C.6) has a solution, i.e., there may be no eigenvlaue in the discrete spectrum for

which V(0) - 0 . In such a case we would conclude that q(x) is linearly stable. We

note in passing that there is always a solution PO , V0 (x) which satisfies (C.3) and for

which V'(0) - 0 ; the lowest such value for V. constitutes the "ground state". For the

solutions we seek, the relation (C.4) implies that the largest Re A corresponds to the

algebraically smallest 0 for this smallest p , V is of one siqn for x < 0
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First we show, for "cubic-like" f , that q(x) is linearly stable if Ey2 > 1 . If

there is an eigensolution, it satisfies (C.3) rewritten as

V" + (s + 1/y + f'(q(x)) - 1/y]V - 0

Now multiply this equation by q'(x) and (4.2) by V'(x), add the two equations, and then

integrate from x - -m to x - 0 to obtain:

q'(O)V'(O) - jO [-Vf(q) + Vq/y]dx - (p + 1/-y) q V dx .dx

Since V(0) - 0 and f(Ev) = E,/y we arrive at

+ 1/y - -q'(O)V'(0)/ f q, V d.

But q'(x)/q'(O) > 0 and V(x)/V'(O) < 0 for x < 0 • Therefore p > -1/y , and from

(C.4) we conclude that Re A < 0 when cy2 > 1 .
2

Next we consider Cy < 1 and restrict attention to PWL. If we normalize V so that

V(E) - 1 , then

V(x) e 
(  )

(C.7)

= sinh 0x/sinh a , < x 4 0

where

a -,g

Since V must satisfy the jump condition

., +

V'1  - V(&l/q' &

we find that V solves the "characteristic equation"

(C.8) G(j,a,C,y) = 0

where

(C.9) G(wa,c,y) I - coth a&- 1/(aao).
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4

Equation (C.8) can be analyzed graphically. For all values of the parameters

a, E,Y, we have that G > 0 for V << 0 . Next, we find parameter ranges such that G >

0 for 0 < 1 -u << 1 . In such cases we conclude that G is of one sign for V < 1.

(If not, then G would have two zeroes for U < I . This would imply that (C.3)-(C.6)

has two different eigenvalues M , each with V(x) non-zero for x < 0 , which

contradicts the known spectral properties of Schroedinger problems.) From this it follows

that there is no solution to (C.3)-(C.6) of the assumed form so that q(x) is linearly

stable for such parameter ranges.

To find the parameter range, suppose p is slightly less than one. Then G > 0 is

equivalent to -E < aa or , using (C.2),

(C.10) -Zn(2a/E - 1) < 2a/E
v v

Hence, if r 2 < I and

2a/Ev > 1.278...

the inequality (C.10) is satisfied, there is no eigensolution of the desired form, and

therefore, q(x) is linearly stable.

To see when q(x) is unstable, observe from (C.4) that tj < -cy implies that at

least one of the two corresponding X values has Re X > 0 . Hence, if G < 0 for

= -y , then G has a zero for ji < -ey and q(x) A.s unstable. For fixed

e,y and pj -y, we write G < 0 as

(C.11) 1 - coth(yr + Ly In (2a/E v - 1)/20] < 2a/(l + cy 2a/Ev 1.

If 0 < 2a/E - 1 << 1 , (C.11) becomes 1 < a//I + cy which is satisfied when Ey2 < 1

so that q(x) is unstable. Finally, observe that at critical values of the parameters

a,c,y for which G(-cy,a,c,y) - 0 , the corresponding X values are a complex pair with

Re A - 0, Im X ± i (- 2) so that a branch of periodic solutions emerges through

Hopf bifurcation.
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rightward moving "front" (rest-to-excited transition) slows down, stops, turns
around, and develops into a leftward moving "back" (excited-to-rest transition)
when it encounters appropriate spatially localized, transient perturbations in
the dependent variables. In this case, the medium ultimately returns to the
rest state. For the same parameter values we have sought, but have not found,
analogous local disturbances sufficient to reflect a propagating "back". These
observations are consistent with the notion that the rest state is in some
sense dominant for a certain parameter range. It is conjectured that local
disturbances or certain boundary conditions cannot cause the reflection of a
nondominant to a dominant transition wave. Partial evidence for this conjecture
is presented by means of an analytic argument.
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